Dans le monde du développement logiciel, des estimations et une détermination de la taille précises sont cruciales pour la planification de projet, l'allocation des ressources et le contrôle des coûts. Si les lignes de code (LOC) sont souvent utilisées comme métrique, elles peuvent être trompeuses, en particulier pour les applications complexes. C'est là qu'interviennent les **Points de Fonction (FP)** - une technique puissante et polyvalente pour mesurer la fonctionnalité des logiciels.
Que sont les Points de Fonction ?
Les Points de Fonction sont une mesure de la taille fonctionnelle d'une application logicielle. Contrairement aux LOC, qui se concentrent sur le code physique, les FP prennent en compte la **complexité fonctionnelle** du système. Ils tiennent compte des différentes entrées, sorties, fichiers et interfaces avec lesquelles les utilisateurs interagissent, offrant une représentation plus holistique et significative de la portée du logiciel.
Composants de l'analyse des Points de Fonction :
L'analyse des Points de Fonction implique l'identification et la quantification de cinq composants clés :
Avantages de l'utilisation des Points de Fonction :
Le processus d'analyse des Points de Fonction :
Conclusion :
Les Points de Fonction sont un outil précieux pour la détermination de la taille et l'estimation des logiciels, offrant une représentation plus complète et précise de la complexité du logiciel que les mesures traditionnelles des LOC. En fournissant une approche standardisée, les FP permettent aux équipes de projet de planifier, de gérer et de suivre efficacement leurs efforts de développement logiciel.
Instructions: Choose the best answer for each question.
1. What is the primary advantage of using Function Points over Lines of Code (LOC) for software sizing?
a) Function Points are easier to calculate. b) Function Points consider only the physical code size. c) Function Points measure the functional complexity of the system. d) Function Points are more suitable for small-scale projects.
c) Function Points measure the functional complexity of the system.
2. Which of the following is NOT a component of Function Point analysis?
a) External Inputs (EI) b) External Outputs (EO) c) Internal Data Structures (IDS) d) External Interface Files (EIF)
c) Internal Data Structures (IDS)
3. What is the main purpose of determining the complexity of each Function Point component?
a) To simplify the calculation process. b) To identify potential design flaws. c) To accurately reflect the effort required for implementation. d) To compare the size of different software systems.
c) To accurately reflect the effort required for implementation.
4. Which of the following is NOT a benefit of using Function Points for software estimation?
a) Improved communication between stakeholders. b) Accurate cost estimation and resource allocation. c) Easier project management for waterfall methodologies. d) Objective comparison of software project sizes.
c) Easier project management for waterfall methodologies.
5. What is the final step in the Function Point analysis process?
a) Identifying functional components. b) Classifying components based on their type. c) Determining complexity of each component. d) Calculating the total Function Points using predefined formulas.
d) Calculating the total Function Points using predefined formulas.
Scenario:
You are tasked with estimating the size of a new online banking application using Function Points. The application has the following features:
Instructions:
Here's a possible breakdown of the Function Points for the online banking application:
Component | Type | Complexity |
---|---|---|
Customer login | External Input (EI) | Average |
Account balance inquiry | External Output (EO) | Average |
Transaction history | External Output (EO) | Complex |
Transfer funds | External Input (EI) | Complex |
Bill payment | External Input (EI) | Complex |
Customer account data | Internal Logical File (ILF) | Complex |
Transaction data | Internal Logical File (ILF) | Complex |
**Calculating Function Points:**
To calculate the total Function Points, you would need to apply specific formulas based on the complexity and count of each component. The exact formulas vary depending on the Function Point counting method used. However, a simplified approach would involve assigning weights to each complexity level (e.g., simple = 3, average = 4, complex = 5) and multiplying those weights by the number of components.
For example, in this scenario, the total Function Points could be calculated as follows:
Total Function Points = (3 x 1) + (4 x 1) + (5 x 1) + (5 x 1) + (5 x 1) + (5 x 1) + (5 x 1) = **37 Function Points**
Note: This is a simplified calculation and the actual Function Point count may vary depending on the specific methodology and complexity weights used.
Chapter 1: Techniques
Function Point Analysis (FPA) employs several techniques to accurately measure software functionality. The core technique is the identification and quantification of the five functional components: External Inputs (EI), External Outputs (EO), External Inquiries (EQ), Internal Logical Files (ILF), and External Interface Files (EIF). These are then weighted based on their complexity. The complexity weighting considers factors such as:
Different FPA methods exist, varying slightly in their complexity weighting and calculation formulas. The most common are:
These techniques ensure a systematic approach, reducing subjectivity and improving the consistency of measurements across different projects and teams. Beyond the basic counting, expert judgment plays a vital role in assigning complexity weights, accurately reflecting the true functional complexity.
Chapter 2: Models
Several models underpin Function Point analysis, all striving to capture the essence of software functionality beyond mere lines of code. The core model is based on the five functional components mentioned earlier (EI, EO, EQ, ILF, EIF). These components represent different aspects of user interaction and data management within the system.
The complexity adjustment is a crucial aspect of the model, moving beyond simple counting. It recognizes that functions can vary significantly in complexity, and this variation significantly impacts development effort. The weighting schemes used (e.g., simple, average, complex) within the various FPA standards (like Mark II and ISO/IEC 14143-1) reflect different approaches to this complexity assessment. These models often involve detailed tables and scoring mechanisms to ensure consistency and objectivity in the assignment of complexity weights.
Some advanced models integrate FPA with other estimation techniques, such as use case points or object points, providing a more holistic and comprehensive view of software size and complexity.
Chapter 3: Software
While FPA is a manual process at its core, software tools significantly improve efficiency and accuracy. These tools automate the tedious task of counting function components and applying complexity weights, reducing the risk of human error.
Key features of FPA software include:
Examples of such software include commercial tools, open-source projects, and even spreadsheets with custom formulas. The choice of software depends on project needs, budget, and organizational preferences.
Chapter 4: Best Practices
Effective use of Function Points requires adherence to best practices:
Chapter 5: Case Studies
Case studies demonstrate the practical application of Function Points across diverse software projects. Examples include:
These case studies illustrate how FPA provides a more robust and reliable approach to software sizing and estimation compared to simpler methods like lines of code, leading to better project management and control. They emphasize the importance of careful planning and the iterative nature of FPA in real-world scenarios.
Comments