Forage et complétion de puits

Turner Equation

Soulever la Charge : Comprendre l'Équation de Turner dans le Pétrole et le Gaz

Dans le monde de la production de pétrole et de gaz, l'extraction efficace repose fortement sur la compréhension de l'interaction complexe entre les fluides et la dynamique des puits. Un aspect crucial est la capacité à extraire les liquides du puits vers la surface, un processus souvent entravé par le poids de la colonne de liquide. C'est là qu'intervient l'équation de Turner, un outil précieux pour prédire le débit de gaz minimal requis pour extraire efficacement les liquides dans les puits fonctionnant à une pression d'écoulement supérieure à 1000 psi.

L'équation de Turner : Une formule pour la réussite de l'écoulement

L'équation de Turner, développée par le célèbre ingénieur en pétrole et gaz Dr. Ray Turner, offre un moyen pratique de calculer le débit minimal de gaz nécessaire pour surmonter la pression hydrostatique de la colonne de liquide et initier la production. Elle est particulièrement utile pour les puits rencontrant des pressions de fond de trou élevées, généralement supérieures à 1000 psi, qui peuvent considérablement entraver l'écoulement de liquide.

L'équation elle-même est présentée comme suit:

Qg = (0.025 * QL * (Pb - Pf) * (D * H)) / (P * M * T)

Où:

  • Qg: Débit de gaz minimal (scf/jour)
  • QL: Taux de production de liquide (bbl/jour)
  • Pb: Pression de fond de trou (psia)
  • Pf: Pression d'écoulement (psia)
  • D: Densité du liquide (lb/ft³)
  • H: Profondeur du puits (ft)
  • P: Pression atmosphérique (psia)
  • M: Poids moléculaire du gaz (lb/lbmol)
  • T: Température (Rankine)

Décodage de l'équation : Aperçus clés et applications

L'équation de Turner fournit des informations précieuses sur la dynamique des opérations de gaz lift. Elle met en évidence le rôle crucial de plusieurs facteurs, notamment:

  • Taux de production de liquide (QL): Des taux de production de liquide plus élevés nécessitent un débit de gaz accru pour maintenir l'efficacité du levage.
  • Différentiel de pression (Pb - Pf): La différence entre les pressions de fond de trou et d'écoulement influe directement sur la quantité de gaz nécessaire au levage.
  • Profondeur du puits (H): Les puits plus profonds nécessitent un débit de gaz plus important pour surmonter la pression hydrostatique plus élevée.
  • Densité du liquide (D): Les liquides plus lourds (densité plus élevée) nécessitent plus de gaz pour surmonter leur poids.

Cette équation trouve une application étendue dans:

  • Conception du gaz lift: Déterminer le taux d'injection de gaz approprié pour les puits nouveaux ou existants.
  • Optimisation de la production: Ajuster les taux d'injection de gaz en fonction des conditions changeantes du puits ou des objectifs de production.
  • Dépannage: Identifier les problèmes potentiels avec les systèmes de gaz lift, tels que l'injection insuffisante de gaz ou le colmatage du puits.

Limitations et considérations

Bien que l'équation de Turner serve de point de départ précieux pour la conception du gaz lift, il est essentiel de reconnaître certaines limitations:

  • Modèle simplifié: L'équation est un modèle simplifié qui ne tient pas compte de la géométrie complexe du puits, des propriétés des fluides ou des interactions gaz-liquide.
  • Hypothèses: L'équation suppose un comportement de gaz idéal et repose sur plusieurs hypothèses concernant le puits et les propriétés des fluides.
  • Dérivation empirique: L'équation est basée sur des observations empiriques et peut ne pas être universellement applicable à toutes les conditions de puits.

Malgré ces limitations, l'équation de Turner reste un outil crucial pour comprendre les principes du gaz lift et prédire les débits de gaz minimaux. En tenant compte de ces limitations et en intégrant des données et des analyses supplémentaires, les ingénieurs peuvent optimiser les systèmes de gaz lift pour une production de pétrole et de gaz efficace et durable.


Test Your Knowledge

Quiz: Lifting the Load - Turner Equation in Oil & Gas

Instructions: Choose the best answer for each multiple-choice question.

1. What is the primary purpose of the Turner Equation?

a) To calculate the optimal pressure for gas injection in a well.

Answer

Incorrect. While pressure is a factor, the Turner Equation primarily focuses on gas flow rate.

b) To predict the minimum gas flow rate required for effective liquid lifting in wells.
Answer

Correct! The Turner Equation helps determine the minimum gas flow needed to overcome hydrostatic pressure and lift liquids.

c) To estimate the total gas reserves available in a reservoir.
Answer

Incorrect. The Turner Equation is not designed to assess gas reserves.

d) To analyze the composition of the gas used in gas lift operations.
Answer

Incorrect. While gas composition can influence lifting efficiency, the Turner Equation focuses on overall gas flow rate.

2. Which of the following factors is NOT directly considered in the Turner Equation?

a) Liquid production rate (QL)

Answer

Incorrect. Liquid production rate is a key factor in the equation.

b) Wellbore diameter
Answer

Correct! The Turner Equation does not explicitly account for wellbore diameter.

c) Depth of the well (H)
Answer

Incorrect. Well depth is directly related to hydrostatic pressure and is considered in the equation.

d) Density of the liquid (D)
Answer

Incorrect. Liquid density is a crucial factor influencing lifting requirements.

3. What is the primary application of the Turner Equation in the context of gas lift operations?

a) Predicting the exact amount of gas required for a specific well at any given time.

Answer

Incorrect. While the equation provides an estimate, it's not precise for dynamic conditions.

b) Providing a starting point for designing and optimizing gas lift systems.
Answer

Correct! The Turner Equation is a valuable tool for initial gas lift design and optimization.

c) Replacing more complex computer simulations for gas lift design.
Answer

Incorrect. The equation is a simplified model and often complements more complex simulations.

d) Accurately forecasting future gas lift requirements for long-term production plans.
Answer

Incorrect. The equation is more suited for immediate design and optimization, not long-term forecasting.

4. What is a key limitation of the Turner Equation?

a) It does not account for the impact of temperature on gas flow.

Answer

Incorrect. The equation includes temperature (T) as a variable.

b) It is only applicable to wells with very low bottomhole pressures.
Answer

Incorrect. The equation is particularly relevant for wells with high bottomhole pressures.

c) It assumes ideal gas behavior and does not fully consider complex wellbore geometries and fluid interactions.
Answer

Correct! The equation is a simplified model and makes certain assumptions about gas behavior and well conditions.

d) It does not account for the impact of well depth on lifting requirements.
Answer

Incorrect. Well depth is a key factor considered in the equation.

5. What is the significance of the pressure differential (Pb - Pf) in the Turner Equation?

a) It represents the total pressure loss experienced by the fluid as it flows to the surface.

Answer

Incorrect. The pressure differential represents the difference between bottomhole pressure and flowing pressure.

b) It indicates the amount of pressure required to overcome the hydrostatic pressure of the liquid column.
Answer

Correct! The pressure differential is directly related to the force needed to lift the liquid column.

c) It reflects the efficiency of the gas lift system in transferring energy to the fluid.
Answer

Incorrect. While efficiency is important, the pressure differential primarily reflects the pressure difference needed for lifting.

d) It is a measure of the gas's ability to expand as it flows up the wellbore.
Answer

Incorrect. Gas expansion is a factor, but the pressure differential directly relates to overcoming hydrostatic pressure.

Exercise: Lifting the Load - Applying the Turner Equation

Scenario:

You are working on a gas lift project for an oil well. The following data is available:

  • Liquid production rate (QL): 500 bbl/day
  • Bottomhole pressure (Pb): 2000 psia
  • Flowing pressure (Pf): 1000 psia
  • Density of the liquid (D): 50 lb/ft³
  • Depth of the well (H): 10,000 ft
  • Atmospheric pressure (P): 14.7 psia
  • Molecular weight of gas (M): 16 lb/lbmol
  • Temperature (T): 520 Rankine

Task:

Calculate the minimum gas flow rate (Qg) required for this well using the Turner Equation.

Equation: Qg = (0.025 * QL * (Pb - Pf) * (D * H)) / (P * M * T)

Show your calculations and interpret the results.

Exercice Correction

**Calculations:** Qg = (0.025 * 500 * (2000 - 1000) * (50 * 10000)) / (14.7 * 16 * 520) Qg ≈ 1,137,788 scf/day **Interpretation:** The minimum gas flow rate required for this well is approximately 1,137,788 scf/day. This means that at least this amount of gas needs to be injected into the well to overcome the hydrostatic pressure and effectively lift the oil to the surface. **Note:** This result is a starting point for gas lift design. Further analysis considering wellbore geometry, fluid properties, and other factors might be necessary for optimal gas lift system design.


Books

  • "Petroleum Production Engineering" by D.R. Matthews and J.P. Russell - A comprehensive text covering all aspects of oil and gas production, including gas lift theory and application.
  • "Gas Lift Design and Operations" by John P. Brill and Harold J. Beggs - A specialized text dedicated to gas lift technologies, including detailed explanations of the Turner Equation and its applications.
  • "Production Operations" by Tarek Ahmed - Covers a wide range of production operations, including gas lift, with a section dedicated to the Turner Equation and its relevance to production optimization.

Articles

  • "Gas Lift Design Using the Turner Equation" by Ray Turner - A seminal article by the developer of the equation, explaining its derivation and providing practical applications.
  • "The Turner Equation: A Simplified Approach to Gas Lift Design" by John P. Brill - A detailed analysis of the Turner Equation, highlighting its advantages and limitations.
  • "Optimizing Gas Lift Performance Using the Turner Equation" by Michael A. Wattenbarger - An article exploring how the Turner Equation can be used to improve gas lift efficiency.

Online Resources

  • "Gas Lift Design and Operation" by SPE - An online course offered by the Society of Petroleum Engineers covering various aspects of gas lift, including the Turner Equation and its practical use.
  • "Gas Lift Design and Optimization" by Schlumberger - A comprehensive online resource offering detailed information on gas lift design, including discussions about the Turner Equation and its applications.
  • "Gas Lift Calculations" by PetroWiki - A wiki dedicated to petroleum engineering, featuring a section on gas lift calculations, including the Turner Equation and its derivation.

Search Tips

  • Use specific keywords: "Turner equation," "gas lift design," "minimum gas flow rate," "oil and gas production."
  • Combine keywords with operators: "Turner equation AND gas lift" OR "Turner equation OR gas lift design."
  • Include relevant technical terms: "bottomhole pressure," "flowing pressure," "liquid production rate," "well depth."
  • Search within specific websites: "site:spe.org Turner equation" OR "site:schlumberger.com Turner equation."

Techniques

Termes similaires
Ingénierie de la tuyauterie et des pipelinesForage et complétion de puitsGéologie et exploration
Les plus regardés
Categories

Comments


No Comments
POST COMMENT
captcha
Back