Le « coût de portage » est un concept crucial sur les marchés financiers, représentant le coût total de détention d'un actif sur une période donnée. Il mesure essentiellement la différence entre les bénéfices de la possession d'un actif (comme les dividendes ou les intérêts) et les coûts associés à sa détention (comme le stockage, l'assurance et le financement). Comprendre le coût de portage est vital pour prendre des décisions d'investissement éclairées sur différentes classes d'actifs, des matières premières et des obligations aux actions et aux produits dérivés.
Décomposer le coût de portage :
Au cœur du sujet, le coût de portage comble le fossé entre les rendements générés par un actif et les dépenses encourues lors de sa possession. Décomposons les éléments :
Avantages : Cela implique généralement le revenu généré par l'actif. Pour une obligation, il s'agit des paiements d'intérêts reçus. Pour les actions, ce sont les dividendes versés. Pour les matières premières, il peut s'agir du rendement de commodité (l'avantage d'avoir un accès physique à la matière première).
Coûts : Ce sont les dépenses liées à la détention de l'actif. Le plus important est généralement le coût de financement, qui correspond aux intérêts payés sur les fonds empruntés pour acheter l'actif. D'autres coûts peuvent inclure :
Le calcul :
Bien que le calcul exact varie en fonction de l'actif, une formule simplifiée est :
Coût de portage = Coûts de financement - Revenus de l'actif
Portage positif vs. Portage négatif :
La relation entre les avantages et les coûts détermine si un actif a un portage positif ou négatif :
Portage positif : Lorsque le revenu généré par l'actif dépasse les coûts de sa détention (Revenus > Coûts). Cela indique que la détention de l'actif est rentable, même avant de considérer l'appréciation du prix. Les investisseurs sont effectivement rémunérés pour détenir l'actif. Des exemples incluent les obligations à haut rendement ou les actions versant des dividendes avec des coûts de financement faibles.
Portage négatif : Lorsque les coûts de détention de l'actif dépassent le revenu généré (Revenus < Coûts). Cela signifie que la détention de l'actif est coûteuse, même si son prix augmente. Les investisseurs paient effectivement une prime pour détenir l'actif. Ceci est courant avec les actifs nécessitant des coûts de financement élevés et générant peu ou pas de revenus, tels que certains contrats à terme ou des actifs détenus en marge avec des taux d'intérêt élevés.
Coût de portage et fixation des prix des contrats à terme :
Le coût de portage joue un rôle particulièrement important sur les marchés à terme. Le prix théorique d'un contrat à terme est souvent lié au prix au comptant de l'actif sous-jacent, ajusté en fonction du coût de portage. Cette relation constitue la base de nombreuses stratégies d'arbitrage. Un modèle simple suggère que le prix à terme devrait être approximativement égal au prix au comptant plus le coût de portage. Les écarts par rapport à cette relation peuvent créer des opportunités d'arbitrage pour les traders.
Exemples :
Obligations du Trésor : Une position longue sur des obligations du Trésor présente généralement un portage positif en raison des intérêts perçus. Cependant, le portage peut devenir négatif si les taux d'intérêt augmentent considérablement, augmentant le coût d'opportunité de la détention des obligations.
Or : Le coût de portage de l'or comprend les coûts de stockage et d'assurance, compensés par toute augmentation potentielle du prix de l'or. Si les coûts de stockage et les frais de financement dépassent l'appréciation du prix de l'or, la position a un portage négatif.
Contrats à terme : Pour les contrats à terme sur matières premières, le coût de portage comprend le stockage et le financement, potentiellement compensé par le rendement de commodité. Les contrats à terme peuvent présenter un portage positif ou négatif selon la dynamique du marché.
Conclusion :
Le coût de portage est un concept fondamental qui influence les décisions d'investissement et la fixation des prix sur les marchés de différentes classes d'actifs. En comprenant les composantes du coût de portage, les investisseurs peuvent mieux évaluer la rentabilité de la détention de différents actifs et identifier les opportunités d'arbitrage potentielles. Une considération attentive du portage positif et négatif est essentielle pour une gestion efficace du portefeuille et une évaluation des risques.
Instructions: Choose the best answer for each multiple-choice question.
1. Which of the following BEST defines the cost of carry? (a) The profit earned from selling an asset. (b) The total cost of holding an asset over a period, considering both benefits and costs. (c) The difference between the buying and selling price of an asset. (d) The risk associated with holding an asset.
2. What is a key component of the "costs" side of the cost of carry calculation? (a) Dividends received from stocks. (b) Interest earned on bonds. (c) Financing costs of borrowing to purchase the asset. (d) Convenience yield from commodities.
3. An asset with positive carry means: (a) The costs of holding the asset exceed the income generated. (b) The income generated from the asset exceeds the costs of holding it. (c) The asset's price is decreasing. (d) The asset's price is volatile.
4. Which of the following is NOT typically a component of the cost of carrying a physical commodity? (a) Storage costs (b) Insurance costs (c) Brokerage commissions on purchase (d) Depreciation
5. In futures markets, the theoretical futures price is often related to the spot price adjusted for: (a) Market sentiment. (b) The cost of carry. (c) Speculative demand. (d) Government regulations.
Scenario: You are considering investing in a gold futures contract. The spot price of gold is $1,800 per ounce. The futures contract matures in three months. The relevant data is:
Task: Calculate the approximate three-month cost of carry per ounce of gold. Assume that income from the asset (convenience yield) is negligible.
1. Calculate annual costs:
2. Calculate three-month costs:
Therefore, the approximate three-month cost of carry per ounce of gold is $23.25. Note that this is a simplified calculation; real-world cost of carry calculations can be more complex.
Chapter 1: Techniques for Calculating Cost of Carry
The calculation of cost of carry varies depending on the asset class. While the fundamental principle remains consistent—the difference between income generated and holding costs—the specifics of each component differ significantly.
1.1. Commodities:
For physical commodities like gold or oil, the cost of carry includes:
Formula (simplified): Cost of Carry = Storage + Insurance + Transportation + Financing Costs – Convenience Yield
1.2. Bonds:
For bonds, the calculation is relatively straightforward:
Formula (simplified): Cost of Carry = Financing Costs – Coupon Payments
1.3. Equities:
For equities, the cost of carry involves:
Formula (simplified): Cost of Carry = Financing Costs – Dividends
1.4. Futures Contracts:
Futures contracts present a more complex scenario:
Formula (simplified): Cost of Carry = Financing Costs + Rollover Costs
Chapter 2: Models for Cost of Carry Analysis
Several models help analyze and predict cost of carry.
2.1. Simple Cost of Carry Model (for Futures): This model posits that the futures price (F) is approximately equal to the spot price (S) plus the cost of carry (C): F ≈ S + C. This model is a simplified representation and ignores factors like volatility and market sentiment.
2.2. More Sophisticated Models: These incorporate additional factors, such as:
Chapter 3: Software and Tools for Cost of Carry Calculation
Numerous software packages and tools facilitate the calculation and analysis of cost of carry:
The choice of software depends on the user's needs, technical skills, and the complexity of the asset class being analyzed.
Chapter 4: Best Practices in Cost of Carry Analysis
Accurate cost of carry analysis requires meticulous attention to detail and a comprehensive understanding of the relevant market dynamics:
Chapter 5: Case Studies of Cost of Carry in Action
5.1. Gold Futures: Analyzing the cost of carry for gold futures requires considering storage costs, insurance, financing costs, and the convenience yield (related to industrial demand for gold). Periods of high interest rates can increase financing costs, potentially resulting in negative carry.
5.2. Treasury Bond Carry: The cost of carry for Treasury bonds depends on the coupon rate and prevailing interest rates. If interest rates rise sharply, the opportunity cost of holding bonds can exceed the coupon income, leading to negative carry.
5.3. Oil Futures: Analyzing oil futures involves considering storage costs (tanker rentals, pipeline fees), insurance, and financing costs. The convenience yield can be particularly significant for oil futures, reflecting the industrial demand for immediate access to oil.
These case studies highlight the importance of considering various factors and selecting an appropriate model to accurately assess cost of carry for different asset classes under changing market conditions. Understanding cost of carry provides valuable insights for effective investment and trading decisions.
Comments