Gestion de placements

Binomial Model

Le Modèle Binomial : Un Fondament de la Valorisation des Options

Le modèle binomial est une pierre angulaire de la théorie de la valorisation des options, fournissant un cadre relativement simple mais puissant pour évaluer les options, en particulier les options de style américain. Bien que des modèles plus sophistiqués comme le modèle de Black-Scholes existent, la nature intuitive du modèle binomial et sa capacité à gérer les caractéristiques d'exercice anticipé le rendent inestimable pour comprendre les principes fondamentaux de la valorisation des options. Développé indépendamment par Cox, Ross, Rubinstein et Sharpe, il offre une approche discrète dans le temps pour modéliser les mouvements de prix de l'actif sous-jacent, contrairement au cadre continu dans le temps de Black-Scholes.

Fonctionnement :

Le cœur du modèle binomial réside dans sa représentation des mouvements futurs des prix des actifs. Il suppose que sur une période donnée (par exemple, un jour, une semaine ou un mois), le prix de l'actif sous-jacent ne peut évoluer que vers l'un des deux états possibles : il peut soit augmenter d'un certain facteur (u), soit diminuer d'un facteur (d). Ces facteurs sont déterminés en fonction de la volatilité de l'actif et de la durée de la période. La probabilité d'un mouvement ascendant (p) est également calculée, généralement sur la base de la probabilité neutre au risque.

Le modèle travaille ensuite à rebours à partir de la date d'expiration de l'option. À l'expiration, la valeur de l'option est connue – elle est soit dans la monnaie, soit hors de la monnaie. En travaillant à rebours à chaque pas de temps, le modèle calcule la valeur de l'option à chaque nœud en prenant la valeur attendue de ses futures valeurs possibles, actualisées au présent à l'aide d'un taux d'intérêt sans risque. Cette espérance est calculée en utilisant les probabilités neutres au risque, qui garantissent que le rendement attendu de l'actif sous-jacent est égal au taux sans risque.

Principaux avantages du modèle binomial :

  • Gère les options américaines : Contrairement au modèle de Black-Scholes, qui est principalement adapté aux options européennes (exerçables uniquement à l'expiration), le modèle binomial peut facilement intégrer la possibilité d'un exercice anticipé, une caractéristique cruciale pour les options de style américain. À chaque nœud de l'arbre, le modèle compare la valeur de l'exercice immédiat à la valeur de la détention de l'option jusqu'à la période suivante, en sélectionnant la valeur la plus élevée.
  • Intuitif et facile à comprendre : Le cadre discret dans le temps du modèle et les calculs simples le rendent relativement facile à comprendre par rapport aux modèles plus complexes. Cette facilité de compréhension contribue à la construction de solides connaissances fondamentales sur la valorisation des options.
  • Flexibilité : Les paramètres du modèle (u, d, p) peuvent être ajustés pour refléter différentes hypothèses concernant la volatilité de l'actif sous-jacent et la période de temps, permettant une flexibilité dans la modélisation de divers scénarios.
  • Simplicité de calcul : Bien qu'un arbre binomial multi-période puisse devenir coûteux en calcul pour un très grand nombre d'étapes, il reste gérable avec la puissance de calcul moderne, notamment par rapport aux simulations de Monte-Carlo.

Limitations du modèle binomial :

  • Temps discret : La nature discrète dans le temps du modèle est une simplification. Les prix des actifs réels évoluent en continu, et non par sauts discrets. Cependant, l'augmentation du nombre de pas de temps peut améliorer la précision de la valorisation du modèle.
  • Hypothèse de volatilité constante : Le modèle suppose que la volatilité de l'actif sous-jacent reste constante tout au long de la durée de vie de l'option. En réalité, la volatilité est souvent variable dans le temps.
  • Intensité de calcul (pour les arbres importants) : Bien que gérable, le calcul des prix des options à l'aide d'un très grand nombre de pas de temps peut devenir coûteux en calcul.

En résumé :

Le modèle binomial, bien qu'il présente des limites, offre un outil précieux pour comprendre et valoriser les options, en particulier les options de style américain. Son approche intuitive et sa capacité à gérer l'exercice anticipé en font un élément crucial de la boîte à outils de valorisation des options, fournissant une base solide pour comprendre les modèles plus avancés. Sa simplicité en fait un point de départ idéal pour toute personne apprenant la valorisation des options.


Test Your Knowledge

Quiz: The Binomial Model in Options Pricing

Instructions: Choose the best answer for each multiple-choice question.

1. The binomial model is primarily used for valuing: (a) Only European-style options (b) Only American-style options (c) Both European and American-style options (d) Neither European nor American-style options

Answer

(c) Both European and American-style options

While it excels at handling American options due to its ability to model early exercise, it can also be used for European options.

2. Which of the following is NOT an assumption of the binomial model? (a) The underlying asset price can move to only two states in each period. (b) Volatility is constant over the life of the option. (c) Asset prices move continuously. (d) The risk-free interest rate is known.

Answer

(c) Asset prices move continuously.

The binomial model uses discrete time steps, not continuous price movements.

3. In the binomial model, 'u' and 'd' represent: (a) The risk-free interest rate and the dividend yield. (b) The upward and downward movement factors of the underlying asset price. (c) The probability of an upward and downward movement. (d) The strike price and the current market price.

Answer

(b) The upward and downward movement factors of the underlying asset price.

'u' typically represents a multiplicative upward factor and 'd' a multiplicative downward factor.

4. The risk-neutral probability in the binomial model is used to: (a) Calculate the expected value of the option at each node. (b) Determine the volatility of the underlying asset. (c) Account for the investor's risk aversion. (d) Calculate the actual probability of an upward or downward movement.

Answer

(a) Calculate the expected value of the option at each node.

Risk-neutral probabilities ensure the expected return matches the risk-free rate, simplifying the valuation process.

5. A key advantage of the binomial model over the Black-Scholes model is its ability to: (a) Handle continuous time movements. (b) Account for stochastic volatility. (c) Model early exercise of American options. (d) Provide closed-form solutions.

Answer

(c) Model early exercise of American options.

The Black-Scholes model is primarily for European options.

Exercise: Binomial Option Pricing

Problem:

Consider a European call option with the following characteristics:

  • Current stock price (S) = $100
  • Strike price (K) = $100
  • Time to expiration = 2 periods (e.g., 2 months)
  • Risk-free interest rate (r) = 5% per period (compounded)
  • Upward movement factor (u) = 1.1
  • Downward movement factor (d) = 0.9
  • Risk-neutral probability of an upward movement (p) = 0.6

Construct a two-period binomial tree to value this European call option. Show your calculations at each node.

Exercice Correction

Step 1: Create the Binomial Tree

                    121
               /            \
            110            99
         /     \         /     \
       100     99      90     81

Step 2: Calculate option values at expiration (period 2)

  • If S = 121, Option value = max(121 - 100, 0) = $21
  • If S = 99, Option value = max(99 - 100, 0) = $0
  • If S = 90, Option value = max(90 - 100, 0) = $0
  • If S = 81, Option value = max(81 - 100, 0) = $0

Step 3: Work backwards to calculate option values at earlier nodes (period 1)

  • At node S=110: Expected value = (0.6 * 21 + 0.4 * 0) = 12.6 Discounted value = 12.6 / (1 + 0.05) = $12.00
  • At node S=99: Expected value = (0.6 * 0 + 0.4 * 0) = 0 Discounted value = 0 / (1 + 0.05) = $0

Step 4: Calculate the option value at time 0 (today)

  • At the initial node S=100: Expected value = (0.6 * 12.00 + 0.4 * 0) = 7.2 Discounted value = 7.2 / (1 + 0.05) = $6.86

Therefore, the value of the European call option today is approximately $6.86.


Books

  • *
  • Options, Futures, and Other Derivatives (John C. Hull): This is considered the bible of derivatives. It provides a comprehensive treatment of the binomial model, including its derivation, applications, and limitations. Look for chapters specifically dedicated to binomial trees and options pricing.
  • Derivatives Markets (Robert L. McDonald): Another widely used textbook offering a rigorous yet accessible explanation of the binomial model and its place within options pricing theory.
  • Stochastic Calculus for Finance II: Continuous-Time Models (Steven Shreve): A more advanced text, but valuable for a deeper understanding of the mathematical foundations underlying the binomial model and its relationship to continuous-time models like Black-Scholes.
  • *II.

Articles

  • * Finding specific articles on the- pure* binomial model can be challenging as it's often a foundational element discussed within broader options pricing literature. However, searching for terms like "binomial option pricing," "Cox-Ross-Rubinstein model," or "American option pricing binomial tree" in academic databases like JSTOR, ScienceDirect, or Google Scholar will yield relevant results. Look for articles published in journals focusing on financial mathematics and econometrics.
  • *III.

Online Resources

  • *
  • Investopedia: Search Investopedia for "binomial option pricing model." They often have concise explanations suitable for beginners.
  • Quantitative Finance Stack Exchange: This forum is a great resource for asking clarifying questions and finding detailed explanations on more technical aspects of the binomial model.
  • YouTube Tutorials: Several channels offer video tutorials on the binomial model. Search for "binomial option pricing tutorial" or "Cox-Ross-Rubinstein model explained." Be selective and choose channels with reputable presenters.
  • *IV. Google

Search Tips

  • * These search terms will help you refine your Google searches:- "Binomial option pricing model": This is a broad term, but a good starting point.
  • "Cox-Ross-Rubinstein model": This specifies the original authors of the model.
  • "Binomial tree option pricing American options": This focuses on the model's application to American options.
  • "Binomial option pricing Excel": If you're interested in implementing the model using Excel.
  • "Risk-neutral probability binomial model": Focuses on a key concept within the model.
  • "Binomial model vs Black-Scholes": For comparative analysis.
  • "Binomial model limitations": To find discussions of the model's drawbacks.
  • V. Specific Papers (Requires academic access):*
  • "Option Pricing: A Simplified Approach" by John C. Cox, Stephen A. Ross, and Mark Rubinstein (Journal of Financial Economics, 1979): This is the seminal paper introducing the binomial model. Access might require a subscription to the journal. Remember to critically evaluate the sources you find. Prioritize reputable academic sources and textbooks over less rigorous online resources, especially when dealing with complex financial concepts. Always cross-reference information to ensure accuracy.

Techniques

The Binomial Model: A Deep Dive

This document expands on the binomial model for options pricing, breaking down the key aspects into separate chapters.

Chapter 1: Techniques

The binomial model employs a recursive approach to value options. The core technique involves building a binomial tree representing possible price movements of the underlying asset. Each node in the tree represents a point in time and a possible price level. The process unfolds as follows:

  1. Defining Parameters: The model requires several inputs: the current price of the underlying asset (S), the strike price (K), the time to expiration (T), the risk-free interest rate (r), and the volatility of the underlying asset (σ). From volatility and time, we derive the up (u) and down (d) factors:

    • u = exp(σ√Δt)
    • d = 1/u or exp(-σ√Δt) (where Δt is the length of each time step, T/n, with 'n' being the number of steps)
  2. Constructing the Binomial Tree: The tree is built iteratively. Starting from the current price (S), each node branches into two possible future prices: Su and Sd. This branching continues for each time step until the expiration date is reached.

  3. Calculating Option Values at Expiration: At the expiration date (the final nodes of the tree), the option's value is easily determined: it's the intrinsic value (max(S-K, 0) for a call option, max(K-S, 0) for a put option).

  4. Backward Induction: This is the key step. Working backward from the expiration date, the value of the option at each node is calculated using the risk-neutral probability (p):

    • p = (exp(rΔt) - d) / (u - d)

    The value (V) at each node is the discounted expected value of the option's value at the subsequent nodes:

    • V = exp(-rΔt) * [p * Vup + (1-p) * Vdown]
  5. Early Exercise (for American Options): For American options, at each node, the model compares the value calculated above (V) with the immediate exercise value. The higher value is selected as the option's value at that node.

  6. Option Price: The option price is the value calculated at the initial node (time zero).

Chapter 2: Models

The basic binomial model discussed above is the foundation. However, variations exist to enhance accuracy and address limitations:

  • Extended Binomial Model: This increases the number of time steps ('n') to better approximate continuous-time price movements. A larger 'n' improves accuracy but increases computational complexity.

  • Jump Diffusion Binomial Model: This incorporates the possibility of sudden, large price jumps, addressing the limitations of the basic model's assumption of continuous price changes. This would require a modified approach to calculating 'u' and 'd'.

  • Stochastic Volatility Binomial Model: This addresses the limitation of constant volatility. It models volatility as a stochastic process, allowing it to change over time, providing a more realistic representation.

Chapter 3: Software

Implementing the binomial model can be done using various software tools:

  • Spreadsheets (Excel, Google Sheets): For smaller trees and simple models, spreadsheets are sufficient. Formulas can be used to recursively calculate option values.

  • Programming Languages (Python, R, MATLAB): These languages provide more flexibility and efficiency, especially for larger trees or more complex variations of the model. Libraries like NumPy (Python) or similar numerical computation libraries significantly aid in calculations.

  • Specialized Financial Software: Some dedicated financial software packages incorporate binomial and other option pricing models.

Chapter 4: Best Practices

  • Choosing the Number of Steps: Increasing the number of steps improves accuracy but increases computational cost. A balance must be struck. Experimentation is key to finding an optimal number of steps for a given level of accuracy and computational resources.

  • Input Parameter Sensitivity Analysis: Analyze the impact of changes in input parameters (volatility, interest rates, etc.) on the calculated option price. This helps understand the model's sensitivity and potential risks.

  • Validation: Compare results from the binomial model with those from other models (e.g., Black-Scholes) or market prices whenever possible to validate the accuracy of the model's implementation and parameter choices.

  • Documentation: Thoroughly document the model's assumptions, parameters, and calculations for reproducibility and transparency.

Chapter 5: Case Studies

Case studies would demonstrate the application of the binomial model in various scenarios:

  • Pricing American Call Options on Stocks: Show a step-by-step calculation using a specific set of parameters and demonstrate the impact of early exercise.

  • Comparing Binomial and Black-Scholes Models: Illustrate the differences in option prices obtained from both models and discuss the implications.

  • Impact of Volatility Changes: Analyze how changes in volatility affect option prices calculated using the binomial model.

  • Using the Binomial Model for Real Options Analysis: Demonstrate how the model can be used to value real options in capital budgeting decisions.

These chapters provide a more comprehensive understanding of the binomial model for options pricing, covering its techniques, variations, implementation, and applications. Remember that the accuracy of the model depends heavily on the accuracy of the input parameters and the assumptions made.

Comments


No Comments
POST COMMENT
captcha
Back