Réglementations et normes de l'industrie

CCITT two-dimensional

Comprendre le codage bidimensionnel CCITT : Plongez dans la désignation d'adresse d'élément relatif modifiée (MREAD)

Le schéma de codage bidimensionnel CCITT (Comité consultatif international télégraphique et téléphonique), également connu sous le nom de désignation d'adresse d'élément relatif modifiée (MREAD), offre un moyen efficace de représenter les changements dans une image bidimensionnelle ou une structure de données. Cette approche est particulièrement utile dans les situations où les changements entre les lignes sont relativement petits et localisés.

Comment cela fonctionne :

MREAD utilise une ligne de référence, généralement située directement au-dessus de la ligne actuelle, pour encoder la position des éléments changeants. Le code de chaque élément changeant sur la ligne actuelle est déterminé par sa position relative à :

  1. L'élément changeant sur la ligne de référence : Ceci s'applique si l'élément changeant sur la ligne actuelle a une contrepartie sur la ligne de référence. Le code représente la distance horizontale entre les deux éléments.
  2. L'élément changeant précédent sur la ligne actuelle : Ceci est utilisé si l'élément changeant n'a pas de contrepartie directe sur la ligne de référence. Le code indique la distance horizontale par rapport à l'élément changeant précédent sur la ligne actuelle.

Avantages du codage bidimensionnel CCITT :

  • Représentation efficace : MREAD réduit considérablement la quantité de données nécessaires pour représenter une image, en particulier lorsque l'image contient des zones de faible complexité ou des changements progressifs.
  • Simplicité et facilité de mise en œuvre : La logique de codage est simple et peut être facilement mise en œuvre dans le matériel ou les logiciels.
  • Coûts d'exploitation minimaux : La ligne de référence n'a besoin d'être stockée qu'une seule fois, et les codes des éléments changeants sont relativement compacts.

Exemple :

Imaginez une simple image en noir et blanc où la ligne de référence (au-dessus) est représentée par la séquence "010010" et la ligne actuelle est "011010". Les éléments changeants sur la ligne actuelle sont aux positions 2 et 3, ce qui correspond aux éléments changeants sur la ligne de référence.

En utilisant MREAD, le code de l'élément changeant à la position 2 serait "0" (car il est à la même position que sur la ligne de référence). Le code de l'élément changeant à la position 3 serait "1" (car il est à une position à droite de l'élément correspondant sur la ligne de référence).

Applications du codage bidimensionnel CCITT :

MREAD trouve son application dans divers domaines, notamment :

  • Compression d'images : Il est utilisé dans les télécopieurs et autres techniques de compression d'images pour transmettre efficacement des images.
  • Transmission de données : Le schéma permet de réduire le volume de données nécessaire pour transmettre des dessins au trait et d'autres données graphiques.
  • Numérisation de documents : Il joue un rôle dans la numérisation de documents, où les différences entre les lignes consécutives sont souvent minimes.

Conclusion :

Le codage bidimensionnel CCITT, avec son approche MREAD, est un outil précieux pour représenter les données efficacement. En exploitant la corrélation entre les lignes consécutives, il minimise la quantité de données nécessaires pour transmettre ou stocker des images et d'autres informations. Cela en fait une technique précieuse dans diverses applications nécessitant une gestion et une transmission efficaces des données.


Test Your Knowledge

CCITT Two-Dimensional Coding Quiz

Instructions: Choose the best answer for each question.

1. What is the primary advantage of using CCITT two-dimensional coding with Modified Relative Element Address Designation (MREAD)?

a) It efficiently encodes images with complex patterns. b) It significantly reduces data required for representing images with localized changes. c) It allows for lossless compression of images with high detail. d) It offers enhanced security for transmitting image data.

Answer

b) It significantly reduces data required for representing images with localized changes.

2. What is the reference line in CCITT two-dimensional coding used for?

a) To provide a baseline for color values in the image. b) To indicate the starting point for encoding data. c) To define the boundaries of the image. d) To establish a reference for identifying changes in the current line.

Answer

d) To establish a reference for identifying changes in the current line.

3. How is the code for a changing element determined in MREAD?

a) By its absolute position within the image. b) By its color value. c) By its relative position to the changing element on the reference line or the preceding changing element on the current line. d) By its distance from the edge of the image.

Answer

c) By its relative position to the changing element on the reference line or the preceding changing element on the current line.

4. Which of the following applications is NOT a common use case for CCITT two-dimensional coding?

a) Image compression in fax machines. b) Video streaming services. c) Document scanning. d) Data transmission of line drawings.

Answer

b) Video streaming services.

5. What is a key characteristic of CCITT two-dimensional coding that makes it suitable for efficient data handling?

a) It relies on complex algorithms for data compression. b) It requires significant processing power to encode and decode images. c) It utilizes a simple and straightforward coding logic. d) It is highly adaptable to various image formats and resolutions.

Answer

c) It utilizes a simple and straightforward coding logic.

CCITT Two-Dimensional Coding Exercise

Instructions:

You are tasked with encoding the following two lines of a black and white image using CCITT two-dimensional coding with MREAD:

Reference Line: 01001010

Current Line: 01100010

Task:

  1. Identify the changing elements on the current line compared to the reference line.
  2. Determine the codes for each changing element based on the MREAD rules.
  3. Write down the encoded representation of the current line, including the codes for the changing elements.

Exercice Correction

1. Changing Elements: The changing elements on the current line are at positions 2 and 3. 2. Codes: * Position 2: Code is "0" (same position as the changing element on the reference line). * Position 3: Code is "1" (one position to the left of the corresponding element on the reference line). 3. Encoded Representation: The encoded representation of the current line would be: 01000110 This representation includes the original elements of the current line with the codes for the changing elements inserted at their respective positions.


Books

  • "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods: This classic textbook covers image compression techniques, including MREAD, in detail.
  • "Image Compression Techniques" by Khalid Sayood: This comprehensive book explores various image compression methods, including CCITT group 3 and 4 standards that utilize MREAD.
  • "Data Compression: The Complete Reference" by David Salomon: This reference book discusses run-length coding and other compression techniques, some of which are related to MREAD.

Articles

  • "A Study of the CCITT Two-Dimensional Coding Scheme for Facsimile Transmission" by S. Morishima, et al.: This article provides a technical analysis of the MREAD algorithm used in fax machines.
  • "Modified Relative Element Address Designation (MREAD) for Efficient Image Compression" by R. Sharma, et al.: This paper discusses the implementation and optimization of MREAD for image compression.
  • "Run Length Coding for Image Compression: An Overview" by M. Khan, et al.: This paper explores run-length coding techniques, which are closely related to the principles of MREAD.

Online Resources

  • ITU-T (International Telecommunication Union): The ITU-T website provides access to various standards and recommendations, including the CCITT group 3 and 4 standards for facsimile transmission.
  • *Wikipedia: * https://en.wikipedia.org/wiki/ModifiedRelativeElementAddressDesignation Provides a basic overview of MREAD and its usage.
  • Online technical forums: Websites like Stack Overflow and Reddit can provide valuable discussions and insights on MREAD implementations.

Search Tips

  • Combine search terms: Use combinations like "CCITT two-dimensional coding," "Modified Relative Element Address Designation," and "MREAD."
  • Specify publication types: Add terms like "pdf," "journal article," or "book" to your search query to filter results.
  • Focus on specific applications: Include keywords like "fax transmission," "image compression," or "document scanning" to narrow down the search.
  • Explore related concepts: Use keywords like "run-length coding," "image coding," and "facsimile standards" to discover additional resources.

Techniques

Understanding CCITT Two-Dimensional Coding: A Deep Dive into Modified Relative Element Address Designation

This document expands on the provided text, breaking it down into distinct chapters for clarity.

Chapter 1: Techniques

CCITT two-dimensional coding, specifically the Modified Relative Element Address Designation (MREAD) technique, leverages the inherent redundancy present in many two-dimensional data structures, particularly those representing images or line drawings. The core technique hinges on comparing successive lines of data. Instead of encoding the absolute position of each element, MREAD encodes the relative position of changes between consecutive lines.

This relative encoding is accomplished by using a reference line. Typically, the line above the current line being processed serves as this reference. Each element in the current line is examined. If an element differs from its corresponding element in the reference line, its relative position is encoded. This relative position is defined in one of two ways:

  1. Relative to the corresponding element in the reference line: If a changed element in the current line has a direct counterpart on the reference line (i.e., a similar element in the same relative position), the code represents the horizontal displacement between the two. A displacement of zero indicates they are in the same column.

  2. Relative to the preceding changed element in the current line: If a changed element in the current line does not have a counterpart in the reference line, its relative position is encoded as the horizontal distance from the previously encoded changed element on the current line.

The encoding scheme itself can be implemented using various methods, such as run-length encoding or more sophisticated techniques to further optimize the code size depending on the data characteristics.

Chapter 2: Models

The underlying model for CCITT two-dimensional coding is a simple yet effective representation of changes in a two-dimensional data structure. It implicitly assumes a high degree of correlation between consecutive lines. This assumption holds true for many types of data, such as scanned documents or fax images, where adjacent lines often share significant similarities.

The model can be visualized as a series of horizontal lines. Each line is treated as a sequence of elements (pixels in an image, for example). The process of encoding involves comparing the current line with the preceding line (the reference line) and representing only the differences.

Mathematically, the model can be described as a transformation that maps a sequence of lines into a compressed representation based on relative differences. The efficiency of the model relies on the statistical properties of the input data. The higher the correlation between consecutive lines, the greater the compression ratio achieved. The model doesn't inherently handle significant changes between lines efficiently; this limitation should be considered when selecting this technique.

Chapter 3: Software

Implementing CCITT two-dimensional coding in software requires algorithms to perform the following steps:

  1. Line Comparison: Compare the current line with the reference line to identify changes.
  2. Relative Position Calculation: Determine the relative position of each changed element using either method outlined in the "Techniques" chapter.
  3. Encoding: Encode the relative positions into a compact representation (e.g., using a variable-length code).
  4. Decoding: Reverse the encoding process to reconstruct the original data from the compressed representation.

Many programming languages offer suitable data structures (arrays, lists) and functions to streamline this process. Libraries specifically designed for image processing or data compression might offer pre-built functions for CCITT coding, eliminating the need to implement the algorithms from scratch.

Chapter 4: Best Practices

To optimize the use of CCITT two-dimensional coding:

  • Pre-processing: Consider pre-processing the input data (e.g., noise reduction, thresholding) to enhance the correlation between lines and improve compression.
  • Adaptive Coding: Implement adaptive coding techniques that adjust the encoding scheme based on the characteristics of the data being processed. This allows for better compression in areas with varying levels of complexity.
  • Error Handling: Incorporate robust error handling to manage situations where data corruption or inconsistencies occur during the encoding or decoding process.
  • Choice of Reference Line: While typically the immediately preceding line is used, experimentation might reveal benefits from using a line further up, depending on the image’s structure.

Chapter 5: Case Studies

  • Fax Transmission: Historically, CCITT two-dimensional coding played a crucial role in fax machine technology. Its efficiency in compressing black-and-white images made it well-suited for transmitting documents over telephone lines.

  • Document Image Archiving: The technique is useful in archiving scanned documents. The high correlation between consecutive lines in text and line-art documents leads to significant compression, reducing storage requirements and improving transmission speeds.

  • Line Drawing Compression: CCITT coding proves highly effective in compressing line drawings, engineering diagrams, and other similar graphics with minimal complexity changes between lines.

Note: Specific quantitative results (compression ratios, speed benchmarks) for these case studies would require detailed analysis using real-world data and specific implementations of the algorithm.

Comments


No Comments
POST COMMENT
captcha
Back