إدارة الاستثمار

Excess Portfolio Returns

فك رموز عوائد المحفظة الزائدة: ما هو أبعد من معدل العائد الخالي من المخاطر

في عالم الاستثمار، لا يقتصر فهم أداء المحفظة على النظر في العائد الخام فقط. يُعدّ **عائد المحفظة الزائد** مقياسًا بالغ الأهمية لتقييم استراتيجيات الاستثمار. يمثل هذا العائد العائد الإضافي الذي تولده المحفظة *فوق* معدل العائد الخالي من المخاطر. في جوهره، يعزل هذا المقياس الجزء من العائد المُعزى إلى مهارة المستثمر، أو توقيت السوق، أو المخاطرة المتأصلة المُتحمّلة، بدلاً من مجرد التعويض عن إقراض الأموال.

فهم المكونات:

الحساب بسيط:

عائد المحفظة الزائد = عائد المحفظة - معدل العائد الخالي من المخاطر

**عائد المحفظة** هو إجمالي التغير المئوي في قيمة المحفظة خلال فترة زمنية محددة (مثل: العائد السنوي). **معدل العائد الخالي من المخاطر** هو العائد الذي يمكن أن يتوقعه المستثمر من استثمار خالٍ من المخاطر تقريبًا، وهو عادةً سند حكومي أو سند خزينة (مثل سندات الخزانة الأمريكية، كما هو مذكور في التعريف). يُعدّ اختيار معدل العائد الخالي من المخاطر أمرًا بالغ الأهمية ويعتمد على العملة والأفق الزمني للمحفظة.

لماذا تهم العوائد الزائدة؟

تُعدّ العوائد الزائدة حيوية لعدة أسباب:

  • تقييم الأداء: تسمح بتقييم أكثر دقة لمهارة مدير المحفظة. قد يبدو العائد الخام المرتفع مثيرًا للإعجاب، ولكن إذا كان أعلى بقليل من معدل العائد الخالي من المخاطر، فهذا يدل على قيمة مضافة ضئيلة. على العكس من ذلك، فإن العائد الخام المتواضع الذي يتجاوز معدل العائد الخالي من المخاطر بشكل كبير يشير إلى أداء مُعدّل بالمخاطرة بشكل فعال.

  • قياس العائد المُعدّل بالمخاطرة: غالبًا ما تُستخدم العوائد الزائدة بالتزامن مع مقاييس مثل معامل شارب أو معامل ترينور. تقوم هذه المعاملات بتطبيع العوائد مقابل المخاطرة، مما يوفر فهمًا أكثر دقة للأداء بالنسبة للمخاطرة المُتحمّلة. يشير العائد الزائد المرتفع المقترن بانخفاض التقلب إلى أداء مُعدّل بالمخاطرة متفوق.

  • تقييم استراتيجية الاستثمار: يسمح مقارنة العوائد الزائدة عبر محافظ أو استراتيجيات استثمارية مختلفة للمستثمرين بتقييم فعالية النهج المختلفة. تشير العوائد الزائدة الإيجابية المُتناسقة إلى استراتيجية تعمل بشكل جيد.

  • توليد ألفا: في مجال التمويل، يمثل "ألفا" العائد الزائد الذي يولده مدير استثمار فوق مقياس السوق. تُعدّ العوائد الزائدة مكونًا بالغ الأهمية في حساب ألفا، خاصة عند استخدام مؤشر سوقي كمعيار بدلاً من معدل العائد الخالي من المخاطر.

القيود والاعتبارات:

على الرغم من أنها مُفيدة، إلا أن العوائد الزائدة ليست خالية من القيود:

  • اختيار معدل العائد الخالي من المخاطر: يمكن أن يؤثر اختيار معدل العائد الخالي من المخاطر على العائد الزائد المحسوب. إن استخدام معدل منخفض أو مرتفع للغاية يمكن أن يُشوّه النتائج.

  • الأفق الزمني: يجب تقييم العوائد الزائدة على مدى أفق زمني مناسب. يمكن أن تُضلّ التقلبات قصيرة المدى، بينما توفر الفترات الأطول صورة أكثر موثوقية للأداء.

  • تحيز البقاء على قيد الحياة: غالبًا ما تعاني مجموعات البيانات من تحيز البقاء على قيد الحياة، حيث يتم حذف الصناديق ذات الأداء الضعيف التي تم تصفيتها، مما قد يؤدي إلى تضخيم متوسط العوائد الزائدة بشكل مصطنع.

ملخص:

يوفر عائد المحفظة الزائد مقياسًا بالغ الأهمية لأداء الاستثمار من خلال عزل العائد المُولّد فوق التعويض عن مجرد تحمل مخاطر الاستثمار الخالي من المخاطر. من خلال استخدام هذا المقياس جنبًا إلى جنب مع مقاييس الأداء المُعدّلة بالمخاطرة الأخرى، يحصل المستثمرون والمحللون على صورة أوضح للمهارة والفعالية الحقيقية لاستراتيجية استثمار معينة.


Test Your Knowledge

Quiz: Unpacking Excess Portfolio Returns

Instructions: Choose the best answer for each multiple-choice question.

1. What does excess portfolio return represent? (a) The total return of a portfolio. (b) The return of a portfolio above and beyond a benchmark risk-free rate. (c) The return solely attributable to market fluctuations. (d) The return of a portfolio after deducting all management fees.

Answer

(b) The return of a portfolio above and beyond a benchmark risk-free rate.

2. Which of the following is typically used as a proxy for the risk-free rate? (a) The average return of the S&P 500. (b) The return of a high-yield corporate bond. (c) The return of a government treasury bill. (d) The return of a small-cap stock index.

Answer

(c) The return of a government treasury bill.

3. Why is the choice of risk-free rate crucial in calculating excess returns? (a) It doesn't matter; any rate will suffice. (b) It affects the calculation of the Sharpe Ratio. (c) It significantly influences the calculated excess return and can skew results. (d) It is only important for regulatory reporting purposes.

Answer

(c) It significantly influences the calculated excess return and can skew results.

4. A portfolio has a return of 12% over a year, and the risk-free rate is 2%. What is the excess portfolio return? (a) 10% (b) 14% (c) 6% (d) 24%

Answer

(a) 10%

5. Which of the following is NOT a limitation of using excess returns? (a) Survivorship bias in data sets. (b) Difficulty in selecting an appropriate risk-free rate. (c) Perfect accuracy in reflecting investment skill. (d) The choice of time horizon can affect the results.

Answer

(c) Perfect accuracy in reflecting investment skill.

Exercise: Calculating Excess Returns

Scenario:

You are evaluating two investment portfolios, Portfolio A and Portfolio B. Over the past year, Portfolio A had a return of 8%, while Portfolio B had a return of 15%. The one-year risk-free rate (based on a government treasury bill) was 1.5%.

Task:

  1. Calculate the excess return for Portfolio A.
  2. Calculate the excess return for Portfolio B.
  3. Which portfolio exhibited a higher excess return? What does this suggest about their respective performances relative to the risk-free rate?

Exercice Correction

1. Excess Return for Portfolio A:

Excess Return = Portfolio Return - Risk-Free Rate = 8% - 1.5% = 6.5%

2. Excess Return for Portfolio B:

Excess Return = Portfolio Return - Risk-Free Rate = 15% - 1.5% = 13.5%

3. Comparison:

Portfolio B exhibited a significantly higher excess return (13.5%) compared to Portfolio A (6.5%). This suggests that Portfolio B generated a much greater return above and beyond what could have been achieved by simply investing in a risk-free asset. While Portfolio B had a higher raw return, the excess return analysis provides a more informative comparison, isolating the portion of the return truly attributable to the investment strategy and risk-taking rather than just the risk-free return.


Books

  • *
  • Investment Science: David G. Luenberger. This comprehensive textbook covers portfolio theory in detail, including risk-free rates, risk-adjusted performance measures (Sharpe Ratio, Treynor Ratio), and the importance of excess returns in evaluating investment strategies. Look for chapters on portfolio optimization and performance evaluation.
  • Modern Portfolio Theory and Investment Analysis: Elton, Gruber, Brown, and Goetzmann. Another classic text that delves into the theoretical underpinnings of portfolio construction and performance measurement, including discussions on excess returns and alpha. Specific chapters on performance attribution will be relevant.
  • A Random Walk Down Wall Street: Burton Malkiel. While not solely focused on excess returns, this book provides valuable context on market efficiency and the challenges of consistently achieving excess returns, highlighting the importance of a benchmark.
  • II. Articles (Search terms for academic databases like JSTOR, ScienceDirect, and Google Scholar):* Use combinations of the following keywords to find relevant articles:- "Excess Returns"
  • "Risk-Adjusted Performance"
  • "Sharpe Ratio"
  • "Treynor Ratio"
  • "Jensen's Alpha"
  • "Portfolio Performance Evaluation"
  • "Benchmarking Investment Strategies"
  • "Risk-Free Rate Selection"
  • "Survivorship Bias in Portfolio Returns"
  • "Time Series Analysis of Portfolio Returns"
  • *III.

Articles


Online Resources

  • *
  • Investopedia: Search for "excess return," "Sharpe ratio," "Treynor ratio," and "alpha" on Investopedia. They provide accessible explanations of these concepts with examples.
  • SSRN (Social Science Research Network): This website hosts working papers and published research in finance. Search using the keywords listed above to find recent academic work on excess returns.
  • Financial websites (e.g., Bloomberg, Yahoo Finance): While not academic sources, these websites often provide data on portfolio performance, allowing you to calculate excess returns using publicly available data on risk-free rates.
  • *IV. Google

Search Tips

  • * Use precise phrasing and combinations of keywords. Here are some examples:- "excess portfolio return" calculation
  • "risk-free rate" selection methodology
  • "Sharpe ratio" vs"Treynor ratio"`
  • "excess return" survivorship bias
  • "alpha" calculation example
  • "excess return" time series analysis
  • "portfolio performance" evaluation metrics
  • V. Specific Considerations for Refining Searches:*
  • Specify Asset Class: Add terms like "equity," "bonds," "hedge funds," or "real estate" to your searches to focus on specific asset classes.
  • Time Period: Include a time frame (e.g., "excess returns 1990-2023") to narrow down the results.
  • Geographical Focus: Specify a region or country (e.g., "excess returns US market") if you're interested in a particular market. By using a combination of these resources and search strategies, you can build a strong understanding of excess portfolio returns and their implications for investment analysis. Remember to critically evaluate the sources and consider the limitations of the data and methodologies used.

Techniques

Unpacking Excess Portfolio Returns: A Deeper Dive

This expands on the initial introduction, breaking the topic down into separate chapters.

Chapter 1: Techniques for Calculating Excess Portfolio Returns

This chapter details the various methods for calculating excess portfolio returns, highlighting nuances and considerations.

The core calculation remains: Excess Portfolio Return = Portfolio Return - Risk-Free Rate

However, the practical application involves several key decisions:

  • Defining Portfolio Return: This requires specifying the calculation methodology (e.g., time-weighted return, money-weighted return). The choice depends on whether the goal is to measure manager skill or the overall performance of an investment strategy involving external cash flows. Time-weighted return is generally preferred for comparing manager performance across different time periods and strategies. Money-weighted return is more sensitive to cash flows. Details on each method, including their formulas and suitable applications, are included here.

  • Selecting the Risk-Free Rate: This is a critical decision. Options include:

    • Government Bond Yields: The yield on a government bond with a maturity matching the investment horizon. This is common, but the choice of which specific government bond (e.g., US Treasury, German Bund) matters and depends on the currency of the portfolio.
    • Interbank Offered Rates (IBORs): Rates like LIBOR (though largely phased out) or SOFR can be used, particularly for shorter-term investments.
    • Overnight Repo Rates: A relevant option for highly liquid investments.

    The chapter discusses the pros and cons of each choice, emphasizing the impact of maturity mismatch and the need for consistency. Considerations of inflation-adjusted risk-free rates are also explored.

  • Handling Dividends and Other Income: The treatment of dividends and other income streams generated by the portfolio needs clear definition. Are they reinvested or treated as separate cash flows? The chapter explains how these factors influence the final excess return calculation.

  • Currency Considerations: For internationally diversified portfolios, the impact of currency fluctuations on the calculation must be addressed. Methods for handling currency risk are explained.

  • Data Frequency: The impact of using daily, weekly, monthly, or annual data on the calculation is analyzed.

Chapter 2: Models for Explaining Excess Portfolio Returns

This chapter explores models used to understand the sources of excess returns.

  • Capital Asset Pricing Model (CAPM): CAPM provides a framework for explaining expected returns based on systematic risk (beta). Excess returns unexplained by CAPM are often attributed to manager skill (alpha). The chapter describes CAPM's assumptions, limitations, and practical application in explaining excess returns.

  • Fama-French Three-Factor Model: This extends CAPM by adding factors for size and value. It aims to explain excess returns beyond what beta alone can account for. The chapter details the model's variables and how it enhances understanding of excess portfolio returns.

  • Other Factor Models: A brief overview of other factor models (e.g., Carhart four-factor model, momentum models) and their potential to explain different sources of excess returns.

  • Regression Analysis: The application of regression analysis to estimate factor betas and alpha from historical data is explained, with examples and interpretations.

Chapter 3: Software and Tools for Analyzing Excess Portfolio Returns

This chapter focuses on the software and tools used for calculating and analyzing excess returns.

  • Spreadsheet Software (Excel, Google Sheets): Basic calculations can be performed using spreadsheet functions. The chapter provides example formulas and demonstrates how to calculate excess returns and related performance metrics.

  • Statistical Software (R, Python): More advanced analyses, including factor model regressions and risk-adjusted performance measures, can be conducted using statistical software. The chapter provides code snippets (R and Python) to illustrate these functionalities.

  • Financial Software Packages (Bloomberg Terminal, Refinitiv Eikon): Professional-grade platforms offer comprehensive data and tools for performance analysis, including pre-built functions for calculating excess returns and related metrics.

  • Dedicated Portfolio Management Systems: These systems are used by institutional investors for tracking portfolio performance, calculating excess returns, and generating performance reports.

Chapter 4: Best Practices for Analyzing Excess Portfolio Returns

This chapter focuses on best practices for a robust and meaningful analysis.

  • Consistent Methodology: Maintaining consistent methodologies for calculating returns and selecting the risk-free rate across different portfolios and time periods is crucial for fair comparison.

  • Appropriate Time Horizon: The choice of time horizon depends on the investment strategy's nature. Short-term fluctuations can be misleading, while longer periods provide a more stable picture.

  • Benchmark Selection: The appropriateness of the benchmark used (risk-free rate or market index) must be carefully considered. The chapter provides guidance on how to choose a suitable benchmark.

  • Survivorship Bias Adjustment: Techniques for mitigating survivorship bias are discussed, such as using comprehensive databases that include failed funds.

  • Backtesting and Forward-Looking Analysis: The chapter emphasizes the value of backtesting strategies to evaluate their historical performance and the importance of forward-looking analysis to make better informed decisions.

  • Transparency and Disclosure: Full transparency in the calculation methodology and the underlying data is essential for building trust and credibility.

Chapter 5: Case Studies of Excess Portfolio Returns

This chapter presents real-world examples of analyzing excess portfolio returns.

  • Case Study 1: A comparative analysis of the excess returns of actively managed mutual funds versus passive index funds over a multi-year period.

  • Case Study 2: An analysis of the excess returns of a hedge fund strategy, considering various risk factors and market conditions.

  • Case Study 3: An examination of the impact of different risk-free rate selections on the calculated excess returns of a portfolio.

Each case study will highlight the application of the techniques and models discussed in previous chapters and will underscore the importance of careful interpretation and consideration of context. The studies will show how excess return analysis aids in evaluating investment performance and making informed investment decisions.

Comments


No Comments
POST COMMENT
captcha
إلى