في عالم الهندسة الكهربائية، خاصةً في سياق معالجة الإشارات والاتصالات، غالبًا ما يظهر مصطلح "BW". يشير هذا الاختصار إلى "عرض النطاق الترددي"، وهي معلمة أساسية تحدد نطاق الترددات التي يمكن للنظام التعامل معها بفعالية. في حين يُعبر عن عرض النطاق الترددي بشكل عام بوحدات هرتز (Hz)، فإن تدوينًا أكثر تخصصًا، "bw a"، يدل على معدل الباندويث الزاوي الحسابي الكسري بوحدات راديان في الثانية.
bw a = (ωu - ωl) / ((ωu + ωl)/2)
حيث:
يوفر مصطلح "bw a" طريقة دقيقة لتعريف وتحديد عرض النطاق الترددي، مع التأكيد على ارتباطه بالتردد الزاوي. هذا التدوين ذو صلة خاصةً في الحالات التي تحتاج فيها إلى تمثيل عرض النطاق الترددي بوحدات راديان في الثانية، مما يسمح بتحليل أكثر دقة وتصميم فعال للأنظمة في الهندسة الكهربائية.
Instructions: Choose the best answer for each question.
1. What does "BW" stand for in electrical engineering? a) Band-width b) Bandwidth c) Band-width-a d) Bandwidth-a
b) Bandwidth
2. What does the notation "bw a" represent? a) Fractional arithmetic mean radian bandwidth b) Bandwidth in Hertz c) Bandwidth in kilohertz d) Angular frequency
a) Fractional arithmetic mean radian bandwidth
3. Why is fractional arithmetic mean used to calculate bandwidth in "bw a"? a) It simplifies calculations for wideband signals. b) It provides a more accurate representation of bandwidth, especially for wideband signals. c) It is a standard practice in electrical engineering. d) It is easier to understand than other methods.
b) It provides a more accurate representation of bandwidth, especially for wideband signals.
4. What is the unit of "bw a"? a) Hertz b) Kilohertz c) Radians per second d) Degrees per second
c) Radians per second
5. Which of the following is NOT an application of "bw a"? a) Designing filters for signal processing b) Determining data rate in communication systems c) Measuring voltage across a resistor d) Analyzing the frequency spectrum of signals
c) Measuring voltage across a resistor
Problem: A bandpass filter has a lower cutoff frequency of 10 kHz and an upper cutoff frequency of 20 kHz. Calculate the fractional arithmetic mean radian bandwidth ("bw a") of this filter.
Instructions:
1. Convert the frequencies to radians per second: - ωl = 2π * 10 kHz = 2π * 10,000 Hz ≈ 62,831.85 rad/s - ωu = 2π * 20 kHz = 2π * 20,000 Hz ≈ 125,663.71 rad/s 2. Apply the formula for "bw a": - bw a = (125,663.71 - 62,831.85) / ((125,663.71 + 62,831.85)/2) - bw a ≈ 62,831.86 / 94,247.78 - bw a ≈ 0.667 rad/s
Comments